Resilient and able to make things happen. Able to do in- and outdoor work. Team's supporter and easy to collaborate with. Appreciate systematic approaches and formal structures.
Software development
Crop modeling: DSSAT
Bayesian optimization
Convolutional Neural Network
Generalized Uncertainty Estimation (GLUE)
1. Machado, A. B. B., & Borja Reis, A. (2024) Optimizing Genotype Calibration in DSSAT: Leveraging Large-Volume, Low-Quality Variety Testing Data. ASA, CSSA, SSSA International Annual Meeting, San Antonio, TX. https://scisoc.confex.com/scisoc/2024am/meetingapp.cgi/Paper/159170
2. Barbosa Junior, M. R.; Moreira, B. R. A.; Oliveira, R. P.; Machado, A. B. B.; Souza, F. L. P.; Trentin, C.; Bortolon, G.; Sirucek, F.; Silva, R. P.; Setiyono, T.; Shiratsuchi, L. S. A high-throughput predictive analysis for qualitative yield in sugarcane based on UAV imagery and machine learning. 2023.
3. Trentin, C.; Barbosa Junior, M. R.; Souza, F. L. P.; Machado, A. B. B.; Chevez, D. D.; Sirucek, F.; Bortolon, G.; Adhikari, R.; Setiyono, T.; Langaro, N. C.; Souza, N.; Escosteguy, P. A. V.; Favareto, A.; Ampatzidis, Y.; Shiratsuchi, L. S. Predicting grain protein, size and yield for malting barley using vegetation indices. 2023.
4. Chevez, D. D.; Barbosa Junior, M. R.; Brido Filho, A. L.; Trentin, C.; Souza, F. L. P.; Machado, A. B. B.; Sirucek, F.; Bortolon, G.; Adhikari, R.; Setiyono, T.; Holland, K.; Shiratsuchi, L. S. Fluorescence Sensor Data As An Input To Predict Sugar Content In Sugarcane Field Using A Machine Learning Model. 2023.
5. Souza, F. L. P.; Favan, J. R.; Souza Passos, J. R.; Campos, S.; Dias, M. A.; Barbosa Junior, M. R.; Trentin, C.; Machado, A. B. B.; Chevez, D. D.; Sirucek, F.; Bortolon, G.; Adhikari, R.; Shiratsuchi, L. S.; Setiyono, T. AI-driven soybean plant density measurement using UAS imagery data. 2023